Part Number Hot Search : 
KP110 C8051F32 A102M ADC10065 SR304 EVICE AD7669JR IDTQS32
Product Description
Full Text Search
 

To Download MC33178 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MC33178, MC33179 Low Power, Low Noise Operational Amplifiers
The MC33178/9 series is a family of high quality monolithic amplifiers employing Bipolar technology with innovative high performance concepts for quality audio and data signal processing applications. This device family incorporates the use of high frequency PNP input transistors to produce amplifiers exhibiting low input offset voltage, noise and distortion. In addition, the amplifier provides high output current drive capability while consuming only 420 mA of drain current per amplifier. The NPN output stage used, exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open-loop high frequency output impedance, symmetrical source and sink AC frequency performance. The MC33178/9 family offers both dual and quad amplifier versions in several package options.
Features http://onsemi.com
DUAL PDIP-8 P SUFFIX CASE 626 1 SOIC-8 D SUFFIX CASE 751
8
8 1
* * * * * * * * * *
600 W Output Drive Capability Large Output Voltage Swing Low Offset Voltage: 0.15 mV (Mean) Low T.C. of Input Offset Voltage: 2.0 mV/C Low Total Harmonic Distortion: 0.0024% www..com (@ 1.0 kHz w/600 W Load) High Gain Bandwidth: 5.0 MHz High Slew Rate: 2.0 V/ms Dual Supply Operation: 2.0 V to 18 V ESD Clamps on the Inputs Increase Ruggedness without Affecting Device Performance Pb-Free Packages are Available
8 1
Micro8 DM SUFFIX CASE 846A
QUAD PDIP-14 P SUFFIX CASE 646 1 SOIC-14 D SUFFIX CASE 751A
14
14 VCC 1
Iref Iref Vin - Vin + CC
14 1
TSSOP-14 DTB SUFFIX CASE 948G
ORDERING INFORMATION
VO CM
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.
DEVICE MARKING INFORMATION
VEE
See general marking information in the device marking section on page 4 of this data sheet.
Figure 1. Representative Schematic Diagram (Each Amplifier)
(c) Semiconductor Components Industries, LLC, 2006
October, 2006 - Rev. 7
1
Publication Order Number: MC33178/D
MC33178, MC33179
MAXIMUM RATINGS
Rating Supply Voltage (VCC to VEE) Input Differential Voltage Range Input Voltage Range Output Short Circuit Duration (Note 2) Maximum Junction Temperature Storage Temperature Range Maximum Power Dissipation Operating Temperature Range Symbol VS VIDR VIR tSC TJ Tstg PD TA Value +36 Note 1 Note 1 Indefinite +150 -60 to +150 Note 2 -40 to +85 Unit V V V sec C C mW C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Either or both input voltages should not exceed VCC or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. (See power dissipation performance characteristic, Figure 2.)
ORDERING INFORMATION
Device MC33178D MC33178DG MC33178DR2 MC33178DR2G MC33178P MC33178PG MC33178DMR2 MC33178DMR2G MC33179D MC33179DG MC33179DR2 MC33179DR2G MC33179P MC33179PG MC33179DTBR2G Package SOIC-8 SOIC-8 (Pb-Free) SOIC-8 SOIC-8 (Pb-Free) PDIP-8 PDIP-8 (Pb-Free) Micro8 Micro8 (Pb-Free) SOIC-14 SOIC-14 (Pb-Free) SOIC-14 SOIC-14 (Pb-Free) PDIP-14 PDIP-14 (Pb-Free) TSSOP-14 (Pb-Free) 25 Units / Rail 2500 / Tape & Reel 55 Units / Rail 4000 / Tape & Reel 50 Units / Rail 2500 / Tape & Reel 98 Units / Rail Shipping
2500 / Tape & Reel
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
http://onsemi.com
2
MC33178, MC33179
MARKING DIAGRAMS
DUAL PDIP-8 CASE 626 8 MC33178P AWL YYWWG 1 1 8 33178 ALYW G 1 SOIC-8 CASE 751 14 MC33179P AWLYYWWG PDIP-14 CASE 646
QUAD SOIC-14 CASE 751A 14 MC33179DG AWLYWW 1
Micro8 CASE 846A 8 3178 AYWG G 1 A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or G = Pb-Free Package (Note: Microdot may be in either location)
TSSOP-14 CASE 948G 14 MC33 179 ALYWG G 1
PIN CONNECTIONS
DUAL CASE 626/751/846A Output 1 Inputs 1 VEE
1 2 3 4 8
QUAD CASE 646/751A/948G Output 1 Inputs 1 VCC Inputs 2 Output 2
1 2 3 4 5 6 7 + - 2 3 + - - + - + 14 13 12 11 10 9 8
- +
7
VCC Output 2 Inputs 2
Output 4 Inputs 4 VEE Inputs 3 Output 3
- +5
6
1
4
(Top View)
(Top View)
http://onsemi.com
3
MC33178, MC33179
DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = -15 V, TA = 25C, unless otherwise noted.)
Characteristics Input Offset Voltage (RS = 50 W, VCM = 0 V, VO = 0 V) (VCC = +2.5 V, VEE = -2.5 V to VCC = +15 V, VEE = -15 V) TA = +25C TA = -40 to +85C Average Temperature Coefficient of Input Offset Voltage (RS = 50 W, VCM = 0 V, VO = 0 V) TA = -40 to +85C Input Bias Current (VCM = 0 V, VO = 0 V) TA = +25C TA = -40 to +85C Input Offset Current (VCM = 0 V, VO = 0 V) TA = +25C TA = -40 to +85C Common Mode Input Voltage Range (DVIO = 5.0 mV, VO = 0 V) Large Signal Voltage Gain (VO = -10 V to +10 V, RL = 600 W) TA = +25C TA = -40 to +85C Output Voltage Swing (VID = 1.0 V) (VCC = +15 V, VEE = -15 V) RL = 300 W RL = 300 W RL = 600 W RL = 600 W RL = 2.0 kW RL = 2.0 kW (VCC = +2.5 V, VEE = -2.5 V) RL = 600 W RL = 600 W Common Mode Rejection (Vin = 13 V) Power Supply Rejection VCC/VEE = +15 V/ -15 V, +5.0 V/ -15 V, +15 V/ -5.0 V Output Short Circuit Current (VID = 1.0 V, Output to Ground) Source (VCC = 2.5 V to 15 V) Sink (VEE = -2.5 V to -15 V) Power Supply Current (VO = 0 V) (VCC = 2.5 V, VEE = -2.5 V to VCC = +15 V, VEE = -15 V) MC33178 (Dual) TA = +25C TA = -40 to +85C MC33179 (Quad) TA = +25C TA = -40 to +85C 6 7, 8 Figure 3 Symbol |VIO| - - 3 DVIO/DT - 4, 5 IIB - - - - -13 - 50 25 2.0 100 - 5.0 - -14 +14 200 - - nA 500 600 nA 50 60 - +13 - - V VO+ VO- VO+ VO- VO+ VO- VO+ VO- 12 13 14, 15 CMR PSR 80 ISC +50 -50 110 +80 -100 - mA - - mA - - - - - - 1.7 - 1.4 1.6 2.4 2.6 - - +12 - +13 - 1.1 - 80 +12 -12 +13.6 -13 +14 -13.8 1.6 -1.6 110 - - - -12 - -13 - -1.1 - dB dB V kV/V 0.15 - 3.0 4.0 mV/C Min Typ Max Unit mV
|IIO|
VICR AVOL
9, 10, 11
16
ID
http://onsemi.com
4
MC33178, MC33179
AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = -15 V, TA = 25C, unless otherwise noted.)
Characteristics Slew Rate (Vin = -10 V to +10 V, RL = 2.0 kW, CL = 100 pF, AV = +1.0 V) Gain Bandwidth Product (f = 100 kHz) AC Voltage Gain (RL = 600 W, VO = 0 V, f = 20 kHz) Unity Gain Bandwidth (Open-Loop) (RL = 600 W, CL = 0 pF) Gain Margin (RL = 600 W, CL = 0 pF) Phase Margin (RL = 600 W, CL = 0 pF) Channel Separation (f = 100 Hz to 20 kHz) Power Bandwidth (VO = 20 Vpp, RL = 600 W, THD 1.0%) Total Harmonic Distortion (RL = 600 W,, VO = 2.0 Vpp, AV = +1.0 V) (f = 1.0 kHz) (f = 10 kHz) (f = 20 kHz) Open Loop Output Impedance (VO = 0 V, f = 3.0 MHz, AV = 10 V) Differential Input Resistance (VCM = 0 V) Differential Input Capacitance (VCM = 0 V) Equivalent Input Noise Voltage (RS = 100 W,) f = 10 Hz f = 1.0 kHz Equivalent Input Noise Current f = 10 Hz f = 1.0 kHz 28 26 21, 23, 24 22, 23, 24 25 Figure 17, 32 18 19, 20 Symbol SR 1.2 GBW AVO BW Am fm CS BWp THD - - - 27 |ZO| Rin Cin en - - - - - - - 0.0024 0.014 0.024 150 200 10 8.0 7.5 0.33 0.15 - - - - - - - - - - W kW pF nV/ Hz 2.5 - - - - - - 2.0 5.0 50 3.0 15 60 -120 32 - - - - - - - - MHz dB MHz dB Deg dB kHz % Min Typ Max Unit V/ms
29
in
pA/ Hz
PD (MAX), MAXIMUM POWER DISSIPATION (mW)
2400 V IO , INPUT OFFSET VOLTAGE (mV) 2000 1600 MC33179D 1200 800 400 0 -60 -40 -20 MC33178D MC33178P/9P
4.0 3.0 2.0 1.0 0 -1.0 -2.0 -3.0 -4.0 -55 -25 0 25 50 75 100 125 Unit 2 Unit 3 Unit 1 VCC = +15 V VEE = -15 V RS = 10 W VCM = 0 V
0
20
40
60
80 100 120 140 160 180
TA, AMBIENT TEMPERATURE (C)
TA, AMBIENT TEMPERATURE (C)
Figure 2. Maximum Power Dissipation versus Temperature
Figure 3. Input Offset Voltage versus Temperature for 3 Typical Units
http://onsemi.com
5
MC33178, MC33179
160 I IB , INPUT BIAS CURRENT (nA) I IB , INPUT BIAS CURRENT (nA) 140 120 100 80 60 40 20 0 -15 -10 -5.0 0 5.0 VCM, COMMON MODE VOLTAGE (V) 10 15 VCC = +15 V VEE = -15 V TA = 25C 120 110 100 90 80 70 60 -55 VCC = +15 V VEE = -15 V VCM = 0 V
-25
0 25 50 75 TA, AMBIENT TEMPERATURE (C)
100
125
Figure 4. Input Bias Current versus Common Mode Voltage
V ICR, INPUT COMMON MODE VOLTAGE RANGE (V)
Figure 5. Input Bias Current versus Temperature
VCC -0.5 V VCC -1.0 V VCC -1.5 V VCC -2.0 V VCC = +5.0 V to +18 V VEE = -5.0 V to -18 V DVIO = 5.0 mV
AVOL, OPEN LOOP VOLTAGE GAIN (kV/V)
VCC
250 200 150 100 50 0 -55 VCC = +15 V VEE = -15 V f = 10 Hz DVO = 10 V to +10 V RL = 600 W -25 0 25 50 75 100 125
VEE +1.0 V VEE +0.5 V VEE -55 -25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (C)
TA, AMBIENT TEMPERATURE (C)
Figure 6. Input Common Mode Voltage Range versus Temperature
Figure 7. Open Loop Voltage Gain versus Temperature
A VOL, OPEN LOOP VOLTAGE GAIN (dB)
50 40 30 20 10 0 -10 -20 1A 1B VCC = +15 V VEE = -15 V VO = 0 V TA = 25C
80 , EXCESS PHASE (DEGREES) 100 120 140 160 180 200 220 240 260 20 280 VO , OUTPUT VOLTAGE (Vpp )
40 35 30 25 20 15 10 5.0 0 0 5.0 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) 20 TA = 25C RL = 10 kW RL = 600 W
1A) Phase (RL = 600 W) 2B -30 2A) Phase (RL = 600 W, CL = 300 pF) 2A -40 1B) Gain (RL = 600 W) 2B) Gain (RL = 600 W, CL = 300 pF) -50 2 34 5 6 7 8 9 10 f, FREQUENCY (Hz)
Figure 8. Voltage Gain and Phase versus Frequency
Figure 9. Output Voltage Swing versus Supply Voltage
http://onsemi.com
6
MC33178, MC33179
V sat , OUTPUT SATURATION VOLTAGE (V) VCC TA = +125C VCC -1.0 V VCC -2.0 V VEE +2.0 V VEE +1.0 V TA = +125C VEE 0 5.0 10 IL, LOAD CURRENT (mA) VCC = +5.0 V to +18 V VEE = -5.0 V to -18 V 15 20 Sink TA = -55C TA = -55C Source VO , OUTPUT VOLTAGE (Vpp ) 28 24 20 16 12 8.0 4.0 0 1.0 k VCC = +15 V VEE = -15 V RL = 600 W AV = +1.0 V THD = 1.0% TA = 25C 10 k 100 k 1.0 M
f, FREQUENCY (Hz)
Figure 10. Output Saturation Voltage versus Load Current
Figure 11. Output Voltage versus Frequency
CMR, COMMON MODE REJECTION (dB)
PSR, POWER SUPPLY REJECTION (dB)
120 100 80 60 40 20
CMR = 20 Log DVCM - ADM + DVCM DVO DVO
120 100 80 60 40 20
PSR = 20 Log - ADM + VCC DVO VEE DVO/ADM DVCC
VCC = +15 V VEE = -15 V VCM = 0 V DVCM = 1.5 V TA = -55 to +125C
+PSR -PSR
TA = -55 to +125C VCC = +15 V VEE = -15 V DVCC = 1.5 V
x ADM
0 10
100
1.0 k 10 k f, FREQUENCY (Hz)
100 k
1.0 M
0 10
100
1.0 k 10 k f, FREQUENCY (Hz)
100 k
1.0 M
Figure 12. Common Mode Rejection versus Frequency Over Temperature
Figure 13. Power Supply Rejection versus Frequency Over Temperature
I SC , OUTPUT SHORT CIRCUIT CURRENT (mA)
100 Source 80 Sink 60 40 20 0 -15
I SC , OUTPUT SHORT CIRCUIT CURRENT (mA)
100 90 Sink 80 Source 70 60 50 -55 VCC = +15 V VEE = -15 V VID = 1.0 V RL < 10 W
VCC = +15 V VEE = -15 V VID = 1.0 V
-9.0
-3.0 0 3.0 VO, OUTPUT VOLTAGE (V)
9.0
15
-25
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (C)
Figure 14. Output Short Circuit Current versus Output Voltage
Figure 15. Output Short Circuit Current versus Temperature
http://onsemi.com
7
MC33178, MC33179
I CC , SUPPLY CURRENT/AMPLIFIER ( A) 625 SR, SLEW RATE (NORMALIZED) 500 375 250 125 0 TA = +125C TA = +25C TA = -55C 1.15 1.10 1.05 1.00 0.95 0.90
-
VCC = +15 V VEE = -15 V DVin = 20 Vpp
0.85 0.80 0.75 -55 -25
VO DVin + 600 W 100 pF
0
2.0
4.0 6.0 8.0 10 12 14 VCC, |VEE| , SUPPLY VOLTAGE (V)
16
18
0 25 50 75 TA, AMBIENT TEMPERATURE (C)
100
125
Figure 16. Supply Current versus Supply Voltage with No Load
Figure 17. Normalized Slew Rate versus Temperature
GBW, GAIN BANDWIDTH PRODUCT (MHz)
10 8.0 6.0 4.0 2.0 0 -55 VCC = +15 V VEE = -15 V f = 100 kHz RL = 600 W CL = 0 pF
50 40 A V , VOLTAGE GAIN (dB) 30 20 10 0 -10 -20 -30 -40 100 125 -50 100 k VCC = +15 V VEE = -15 V RL = 600 W TA = 25C CL = 0 pF Gain Phase
80 120 140 160 180 200 220 240 260 280 100 M , EXCESS PHASE (DEGREES) 125 100
-25
0 25 50 75 TA, AMBIENT TEMPERATURE (C)
1.0 M 10 M f, FREQUENCY (Hz)
Figure 18. Gain Bandwidth Product versus Temperature
Figure 19. Voltage Gain and Phase versus Frequency
50 40 A V , VOLTAGE GAIN (dB) 30 20 10 0 -10 1B 2B 2A 1A TA = 25C RL = CL = 0 pF
80 Am, OPEN LOOP GAIN MARGIN (dB) 100 140 160 180 200 220 240 260 10 M 280 100 M , PHASE (DEGREES) 120
15 CL = 10 pF 12 CL = 100 pF 9.0 CL = 300 pF 6.0 3.0 0 -55 VCC = +15 V VEE = -15 V RL = 600 W
-20 1A) Phase V =18 V, V = -18 V CC EE -30 2A) Phase VCC 1.5 V, VEE = -1.5 V 1B) Gain V = 18 V, VEE = -18 V -40 2B) Gain VCC = 1.5 V, V = -1.5 V CC EE -50 100 k 1.0 M
-25
0
25
50
75
100
f, FREQUENCY (Hz)
TA, AMBIENT TEMPERATURE (C)
Figure 20. Voltage Gain and Phase versus Frequency
Figure 21. Open Loop Gain Margin versus Temperature
http://onsemi.com
8
MC33178, MC33179
60 m , PHASE MARGIN (DEGREES) 50 40 30 20 10 0 -55 VCC = +15 V VEE = -15 V RL = 600 W -25 0 25 50 75 100 125 CL = 10 pF A m , GAIN MARGIN (dB) CL = 100 pF 12 10 8.0 6.0 4.0 2.0
Vin R2
60 50 VCC = +15 V VEE = -15 V RT = R1+R2 VO = 0 V TA = 25C
R1
Gain Margin 40 30 20 - + 1.0 k 10 k Phase Margin
VO
CL = 300 pF
10 0 100 k
0 100
TA, AMBIENT TEMPERATURE (C)
RT, DIFFERENTIAL SOURCE RESISTANCE (W)
Figure 22. Phase Margin versus Temperature
Figure 23. Phase Margin and Gain Margin versus Differential Source Resistance
18 A m , OPEN LOOP GAIN MARGIN (dB) 15 12 Gain Margin Phase Margin VCC = +15 V VEE = -15 V VO = 0 V
60 m, PHASE MARGIN (DEGREES) CS, CHANNEL SEPARATION (dB) 50 40 30
- Vin VO + 600 W CL
150 140 130 120 110 100 100 Drive Channel VCC = +15 V CEE = -15 V RL = 600 W TA = 25C
9.0 6.0 3.0 0 10 100 CL, OUTPUT LOAD CAPACITANCE (pF)
20 10 0 1.0 k
1.0 k
10 k f, FREQUENCY (Hz)
100 k
1.0 M
Figure 24. Open Loop Gain Margin and Phase Margin versus Output Load Capacitance
Figure 25. Channel Separation versus Frequency
THD, TOTAL HARMONIC DISTORTION (%)
10 |Z O |, OUTPUT IMPEDANCE ( ) VCC = +15 V VO = 2.0 Vpp VEE = -15 V TA = 25C RL = 600 W 1.0 AV = 100 0.1 AV = 10 AV = 1.0 10 k 100 k
500 AV = 1000 400 300 200 100 0 1.0 k 3 4 100 1.0 k f, FREQUENCY (Hz) 10 k 100 k f, FREQUENCY (Hz) 1.0 M 10 M 1. AV = 1.0 2. AV = 10 3. AV = 100 4. AV = 1000 VCC = +15 V VEE = -15 V VO = 0 V TA = 25C
2
1
0.01 10
Figure 26. Total Harmonic Distortion versus Frequency
Figure 27. Output Impedance versus Frequency
http://onsemi.com
9
m, PHASE MARGIN (DEGREES)
MC33178, MC33179
e n , INPUT REFERRED NOISE VOLTAGE ( nV/ Hz ) 20 18 16 14 12 10 8.0 6.0 4.0 2.0 0 10 VCC = +15 V VEE = -15 V TA = 25C 100 1.0 k f, FREQUENCY (Hz) 10 k 10 k i n , INPUT REFERRED NOISE CURRENT pA/ Hz ) (
Input Noise Voltage Test Circuit + VO -
0.5
Input Noise Current Test Circuit
0.4 0.3 0.2 0.1 0 10 VCC = +15 V VEE = -15 V TA = 25C 100
RS
+ - VO
(RS = 10 kW)
1.0 k f, FREQUENCY (Hz)
10 k
100 k
Figure 28. Input Referred Noise Voltage versus Frequency
Figure 29. Input Referred Noise Current versus Frequency
100 80 70 60 50 40 30 20 10 0 10 100 1.0 k CL, LOAD CAPACITANCE (pF) 10 k RL = 600 W RL = 2.0 kW V O, OUTPUT VOLTAGE (5.0 V/DIV) 90 PERCENT OVERSHOOT (%) VCC = +15 V VEE = -15 V TA = 25C VCC = +15 V VEE = -15 V AV = +1.0 RL = 600 W CL = 100 pF TA = 25C
t, TIME (2.0 ms/DIV)
Figure 30. Percent Overshoot versus Load Capacitance
Figure 31. Non-inverting Amplifier Slew Rate
V O, OUTPUT VOLTAGE (50 mV/DIV)
V O, OUTPUT VOLTAGE (5.0 V/DIV)
VCC = +15 V VEE = -15 V AV = +1.0 RL = 600 W CL = 100 pF TA = 25C
VCC = +15 V VEE = -15 V AV = +1.0 RL = 600 W CL = 100 pF TA = 25C
t, TIME (2.0 ns/DIV)
t, TIME (5.0 ms/DIV)
Figure 32. Small Signal Transient Response
Figure 33. Large Signal Transient Response
http://onsemi.com
10
MC33178, MC33179
10 k To Receiver A1 - + 10 k 1.0 mF 200 k 120 k From Microphone 2.0 k A2 300 820 0.05 mF
10 k
- + VR
Tip
1N4678 10 k
Phone Line
Ring 10 k - + A3
VR
Figure 34. Telephone Line Interface Circuit
APPLICATION INFORMATION This unique device uses a boosted output stage to combine a high output current with a drain current lower than similar bipolar input op amps. Its 60 phase margin and 15 dB gain margin ensure stability with up to 1000 pF of load capacitance (see Figure 24). The ability to drive a minimum 600 W load makes it particularly suitable for telecom applications. Note that in the sample circuit in Figure 34 both A2 and A3 are driving equivalent loads of approximately 600 W . The low input offset voltage and moderately high slew rate and gain bandwidth product make it attractive for a variety of other applications. For example, although it is not single supply (the common mode input range does not include ground), it is specified at +5.0 V with a typical common mode rejection of 110 dB. This makes it an excellent choice for use with digital circuits. The high common mode rejection, which is stable over temperature, coupled with a low noise figure and low distortion, is an ideal op amp for audio circuits. The output stage of the op amp is current limited and therefore has a certain amount of protection in the event of a short circuit. However, because of its high current output, it is especially important not to allow the device to exceed the maximum junction temperature, particularly with the MC33179 (quad op amp). Shorting more than one amplifier could easily exceed the junction temperature to the extent of causing permanent damage.
Stability
As usual with most high frequency amplifiers, proper lead dress, component placement, and PC board layout should be exercised for optimum frequency performance. For example, long unshielded input or output leads may result in unwanted input/output coupling. In order to preserve the relatively low input capacitance associated with these amplifiers, resistors connected to the inputs should be immediately adjacent to the input pin to minimize additional stray input capacitance. This not only minimizes the input pole frequency for optimum frequency response, but also minimizes extraneous "pick up" at this node. Supplying decoupling with adequate capacitance immediately adjacent to the supply pin is also important, particularly over temperature, since many types of decoupling capacitors exhibit great impedance changes over temperature. Additional stability problems can be caused by high load capacitances and/or a high source resistance. Simple compensation schemes can be used to alleviate these effects.
http://onsemi.com
11
MC33178, MC33179
If a high source of resistance is used (R1 > 1.0 kW), a compensation capacitor equal to or greater than the input capacitance of the op amp (10 pF) placed across the feedback resistor (see Figure 35) can be used to neutralize that pole and prevent outer loop oscillation. Since the closed loop transient response will be a function of that capacitance, it is important to choose the optimum value for that capacitor. This can be determined by the following Equation:
CC + (1 ) [R1 R2])2 CL (ZO R2) (1)
For moderately high capacitive loads (500 pF < CL < 1500 pF) the addition of a compensation resistor on the order of 20 W between the output and the feedback loop will help to decrease miller loop oscillation (see Figure 36). For high capacitive loads (CL > 1500 pF), a combined compensation scheme should be used (see Figure 37). Both the compensation resistor and the compensation capacitor affect the transient response and can be calculated for optimum performance. The value of CC can be calculated using Equation 1. The Equation to calculate RC is as follows:
RC + ZO R1 R2 (2)
where: ZO is the output impedance of the op amp.
R2 CC R2
- + R1 ZL
- +
RC
R1
CL
Figure 35. Compensation for High Source Impedance
Figure 36. Compensation Circuit for Moderate Capacitive Loads
R2
CC
- +
RC
R1
CL
Figure 37. Compensation Circuit for High Capacitive Loads
http://onsemi.com
12
MC33178, MC33179
PACKAGE DIMENSIONS
PDIP-8 P SUFFIX CASE 626-05 ISSUE L
NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. DIM A B C D F G H J K L M N MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC --- 10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC --- 10_ 0.030 0.040
8
5
-B-
1 4
F
NOTE 2
-A-
L
C -T-
SEATING PLANE
J N D K
M
M TA B
H
G 0.13 (0.005)
M M
http://onsemi.com
13
MC33178, MC33179
Micro8t CASE 846A-02 ISSUE G
D
HE
E
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. 846A-01 OBSOLETE, NEW STANDARD 846A-02. MILLIMETERS NOM MAX -- 1.10 0.08 0.15 0.33 0.40 0.18 0.23 3.00 3.10 3.00 3.10 0.65 BSC 0.40 0.55 0.70 4.75 4.90 5.05 MIN -- 0.05 0.25 0.13 2.90 2.90 INCHES NOM -- 0.003 0.013 0.007 0.118 0.118 0.026 BSC 0.016 0.021 0.187 0.193 MIN -- 0.002 0.010 0.005 0.114 0.114
PIN 1 ID
e
b 8 PL 0.08 (0.003)
M
TB
S
A
S
-T- PLANE 0.038 (0.0015) A1
SEATING
A c L
DIM A A1 b c D E e L HE
MAX 0.043 0.006 0.016 0.009 0.122 0.122 0.028 0.199
SOLDERING FOOTPRINT*
8X
1.04 0.041
0.38 0.015
8X
3.20 0.126
4.24 0.167
5.28 0.208
6X
0.65 0.0256
SCALE 8:1
mm inches
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
14
MC33178, MC33179
SOIC-8 NB CASE 751-07 ISSUE AH
-X-
A
8 5
B
1
S
4
0.25 (0.010)
M
Y
M
-Y- G
K
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0_ 8_ 0.010 0.020 0.228 0.244
C -Z- H D 0.25 (0.010)
M SEATING PLANE
N
X 45 _
0.10 (0.004)
M
J
ZY
S
X
S
DIM A B C D G H J K M N S
SOLDERING FOOTPRINT*
1.52 0.060
7.0 0.275
4.0 0.155
0.6 0.024
1.270 0.050
SCALE 6:1 mm inches
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
15
MC33178, MC33179
PACKAGE DIMENSIONS
PDIP-14 CASE 646-06 ISSUE P
14
8
B
1 7
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.290 0.310 --- 10 _ 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.37 7.87 --- 10 _ 0.38 1.01
A F N -T-
SEATING PLANE
L C
H
G
D 14 PL
K
M
J M
DIM A B C D F G H J K L M N
0.13 (0.005)
http://onsemi.com
16
MC33178, MC33179
PACKAGE DIMENSIONS
SOIC-14 CASE 751A-03 ISSUE H
-A-
14 8
-B-
P 7 PL 0.25 (0.010)
M
B
M
1
7
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
G C -T-
SEATING PLANE
R X 45 _
F
D 14 PL 0.25 (0.010)
K
M
M
S
J
TB
A
S
DIM A B C D F G J K M P R
MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50
INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019
SOLDERING FOOTPRINT*
7X
7.04 1 0.58
14X
14X
1.52
1.27 PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
17
MC33178, MC33179
PACKAGE DIMENSIONS
TSSOP-14 CASE 948G-01 ISSUE B
14X K REF
0.10 (0.004) 0.15 (0.006) T U
S
M
TU
S
V
S
N
2X
L/2
14
8
0.25 (0.010) M
L
PIN 1 IDENT. 1 7
B -U-
N F DETAIL E K
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 --- 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.50 0.60 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.193 0.200 0.169 0.177 --- 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.020 0.024 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_
0.15 (0.006) T U
S
J J1
SECTION N-N -W-
C 0.10 (0.004) -T- SEATING
PLANE
D
G
H
DETAIL E
SOLDERING FOOTPRINT*
7.06 1
0.36
14X
14X
1.26
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
18
CCC EEE CCC EEE CCC
A -V-
K1
0.65 PITCH
DIMENSIONS: MILLIMETERS
MC33178, MC33179
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative
http://onsemi.com
19
MC33178/D


▲Up To Search▲   

 
Price & Availability of MC33178

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X